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0. Lecture Overview
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1. What is TomP2P

2. History and project information
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3. Fundamental concepts

1. XOR-based iterative routing

2. Futures

3. API Overview

4. Components with examples

1. DHT with examples

2. Tracker / PEX with examples

5. Advanced Topics in TomP2P

1. Bloom Filters
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P2P in the news

 14.03.2016 Starker Auftritt der Schweizer IT-Industrie 

an der weltweit grössten Computermesse. Aber auch 

die Konkurrenz schläft nicht.

 Coinblesk @CeBIT

 Currently: 2 MA (Andreas, Alessandro), 1 BA (Christian)

 09.03.2016 UZH an der CeBIT 2016: Schnell und sicher 

mit Bitcoins mobil bezahlen

 17.03.2016 Blitzschnelle Bitcoins

 14.03.2016 Ethereum Blockchain Project Launches 

First Production Release

 Fundamental change in the protocol makes older versions 

incompatible → hard fork

 Bitcoin Classic vs. Core

http://www.inside-it.ch/articles/43229
https://bitcoin.csg.uzh.ch/
http://www.mediadesk.uzh.ch/articles/2016/uzh-an-der-cebit-2016-schnell-und-sicher-mit-bitcoins-mobil-bezahlen.html
http://www.news.uzh.ch/de/articles/2016/Blitzschnelle-Bitcoins.html
http://www.coindesk.com/ethereum-blockchain-homestead/
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1. Introduction

What is TomP2P

History and project information
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Introduction

 TomP2P is a P2P framework/library

 Implements DHT (structured), broadcasts ([un]structured), direct 

messages (can implement super-peers)

 NAT handling: UPNP, NATPMP, new addition: relays, hole punching 

(work in progress)

 Direct / indirect (tracker / mesh) storage

 Direct / indirect replication (churn prediction and ~rsync)

 Modes: key,value / multi-key (versioned) value

 Java 6, Maven, Github, Netty, TCP/UDP, MapDB, (Android)

https://github.com/tomp2p/TomP2P


6P2P with TomP2P

Introduction

 TomP2P extends DHT

 Distributed hash table concept → put(key,value) / get(key)

 Extended DHT operations → 

 put(key1,key2,value)

 put prepare / put confirm

 add(value)

 digest(key) / bloomfilters / versions

 get(key) + bloomfilters



7P2P with TomP2P

Introduction

 TomP2P history

 TomP2P v1: Created in 2004 and used for a distributed DNS project

 This version used blocking IO operations (1 thread / socket)

 TomP2P v2: Apache MINA (java.nio framework) / 6K LoC

 Not well designed for non-blocking operations (event-driven)

 TomP2P v3: Redesigned for non-blocking operations

 Switched to Netty / 14K LoC, 6K LoC JUnits

 TomP2P v4: API refinements, new features

 Latest feature (work in progress) MapReduce

 19K LoC (core), 6K LoC JUnits (core)

 TomP2P v5 (core 18K LoC): modularization, relays, API refinements
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Introduction

 TomP2P started in 24.05.2004

 Github: watch 34 / star 192 / fork 68 (not sure if good/bad)

 TomP2P website (although documentation is outdated)

 75 users on the 

mailinglist

 11 contributors on

github

 Don’t buy the book!

https://github.com/tomp2p/TomP2P
https://github.com/tomp2p/TomP2P/graphs/contributors
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Introduction

 Academic background (CSG - UZH):

 Used in EU projects: EC-GIN, Emanics, SmoothIT, SmartenIT, Flamingo

 Used in research projects: LiveShift, DRFS, Radiommender, Box2Box, 

Hive2Hive, B-Tracker, PiCsMu, peerwasp, (and non-academic)

 http://tomp2p.net

 For questions: mailinglist (http://lists.tomp2p.net/cgi-bin/mailman/listinfo)

 Specific questions: bocek -at- ifi.uzh.ch or tom -at- tomp2p.net

 Documentation: http://tomp2p.net/doc/ (TomP2P v4.4)

Overview: http://en.wikipedia.org/wiki/TomP2P

 If something is missing, ask! – Documentation for v5 is missing!

 Development: https://github.com/tomp2p

 Feature request possible if good reasons provided

 (Demo: how to setup TomP2P with Netbeans/git/maven)

http://www.csg.uzh.ch/research/previous-projects/liveshift.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5372781&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6335817
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6688736
http://hive2hive.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6038749
http://pics.mu/
http://www.peerwasp.com/
http://tomp2p.net/
http://lists.tomp2p.net/cgi-bin/mailman/listinfo
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Introduction

 A Declarative Interface for Smart-phone Based Sensor 

Network Systems, Asanka Sayakkara and Kasun De 

Zoysa, IWMS 2012, Bejing, China

 Hybrid Peer-to-Peer DNS, Ricardo Sancho and Ricardo 

Lopes Pereira, Instituto Superior Tecnico, Porto, 

Portugal

 A Semantic Publish-Subscribe Coordination Framework 

for IHE based Cross-Community Health Record 

Exchange, Visara Urovi, Alex C. Olivieri, Stefano 

Bromuri, Nicoletta Fornara, Michael Schumacher, ACM 

SIGAPP Applied Computing Review, 2013 (slides)

http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/papers/msispn-sayakkara.pdf
http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/
https://fenix.tecnico.ulisboa.pt/downloadFile/395145923129/main.pdf
http://delivery.acm.org/10.1145/2540000/2537732/p38-urovi.pdf?ip=130.83.106.155&id=2537732&acc=ACTIVE SERVICE&key=2BA2C432AB83DA15.24DDBA2ADC8180AB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=417454326&CFTOKEN=47199322&__acm__=1394023877_e33a11424615ce6fd5f1de6368cb3abc
http://doc.rero.ch/record/209307
http://www.slideshare.net/IIG_HES/a-peer-to-peer-agent-coordination-framework-for-ihe-based-crosscommunity-health-record-exchange
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Introduction

 Adding Cryptographically Enforced Permissions to Fully 

Decentralized File Systems – TUM, Bernhard Amann, 

Thomas Fuhrmann, April 2011

 Optimis FP7 IP project:  Optimized Infrastructure 

Services, D1.2.1.3, Architecture Design document, 

ended May 2013

 Distributed Name-based Entity Search, Fausto 

Giunchiglia and Alethia Hume, ISWC 2012, Boston

 A Distributed Directory System, Fausto Giunchiglia and 

Alethia Hume, SSWS 2013, Sydney

http://mediatum.ub.tum.de/doc/1094233/1094233.pdf
http://optimistoolkit.com/assets/docs/d1213-architecture-design.pdf
http://eprints.biblio.unitn.it/4016/1/techrep033.pdf
http://iswc2012.semanticweb.org/
http://www.ssws-ws.org/SSWS2013/program.html
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Introduction

 A P2P Semantic Query Framework for the Internet of 

Things, Richard Mietz, Sven Groppe, Oliver Kleine, 

Daniel Bimschas, Stefan Fischer, Kay Römer and 

Dennis Pfisterer, PIK, Volume 36, Issue 2 (May 2013)

 P2P Minecraft: “The mods described below are about 

adding peer-to-peer functionalities to Minecraft.”

 Bitcoin Gateway - A Peer-to-peer Bitcoin Vault and 

Payment Network, Omar Syed & Aamir Syed, July 2011

 Bitsquare.io – The decentralized bitcoin exchange, 

switched to Tor

http://www.degruyter.com/view/j/piko-2013-36-issue-2/pik-2013-0006/pik-2013-0006.xml
http://www.minecraftforum.net/topic/1848364-152forgeapi-peer-to-peer-p2p-sspsmp/
http://arimaa.com/bitcoin/
http://arimaa.com/bitcoin/BitcoinGateway20110726.pdf
https://bitsquare.io/
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Introduction

 TomP2P with Android (early research)

 CSG: early adopter

 TomP2P 5 and Android:

work in progress
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2. Example

Example and Demo



15P2P with TomP2P

Example

 Demo: a simple put / get example

 Package net.tomp2p.examples. ExamplePutGet

 Defaults

 Replication factor 6, replication not enabled, 

 domain, content, version are zero if not specified
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3. Fundamental Concepts

XOR-based iterative routing

Futures

API Overview
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Fundamental Concepts (repetition)

 Recursive routing vs. iterative  routing

+ online status update

- faulty peers cause delay

+ control

- neighbor maintenance
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Fundamental Concepts (repetition)

 TomP2P: iterative XOR-based routing

 Node and data item unique 160bit identifier

 Keys are located on the nodes whose node ID is closest to the key

 Search for a key:

 Lookup in neighbor table for

closest peer (e.g. peers with ID: 0x1, 

0x2, 0x3, 0x4)

 Difference to Pastry: one metric, 

no leaf set / routing table

My ID Neighbor 

ID

Distance 

(XOR)

1 2 3

1 3 2

1 4 5
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Fundamental Concepts

 TomP2P iterative XOR-based routing

 Neighbors stored in 159 “bags”, bag has capacity c (Kademlia, c=20)

 Routing takes O(log n) → M03, slides 15

 By default UDP, message header 63 bytes

 Routing Mechanism variables, can be tuned

 directHits, potentialHits – routing sends digest

 forceTCP – use TCP instead of UDP

 maxDirectHits, maxNoNewInfo, maxSuccess, maxFailure – stop 

conditions

 parallel – number of parallel connections

 For the CT - don’t worry, default settings are fine 
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Fundamental Concepts

 Distributed operations use futures (~promises, Guava)

 Future objects

 Keeps track of future events, while the “normal” program flow 

continues → addListener() or await()

 await(): Operations are executed in same thread

 addListener(): Operations are executed in same or other thread

 Demo: blocking operation (net.tomp2p.examples. 

ExamplePutGet)

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/util/concurrent/ListenableFuture.html
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Fundamental Concepts

 Demo: non - blocking operation (net.tomp2p.examples. 

ExamplePutGet)

 New utilities necessary (loops as recursions)

 Advise: use addListener(…) as much as possible!

 operationComplete(…) must be always called (problem if not)

https://github.com/netty/netty/issues/3449
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Fundamental Concepts

 Future utilities

 FutureForkJoin(int nr, boolean cancel, K... Forks)

 Joins already “forked” futures. Waits until all or nr future finished. If nr 

reached, futures may be cancelled (e.g. abort download)

 FutureLateJoin(int nrMaxFutures, int minSuccess)

FutureLaterJoin()

 No need to add the futures in the constructor, can be added later

 FutureDone()

 A generic future used in many places, can be placeholder

 ForkJoin in Java7

 Fork and join framework – future utilities in TomP2P focus on join, 

forking is done “manually”

 Needs face-lifting, Java8 with CompletableFuture

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
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Fundamental Concepts

 Fun with futures: loops
Future loop() {

Future future = new Future();

recLoop(future);

return future;

}

void recLoop(Future future) {

int active = 0;

for (int i = 0; i < parallel; i++) {

//if future finished, it will be set to null

if (futureResponses[i] == null) {

active++;

futureResponses[i] = doSomething();

}

else if (futureResponses[i] != null) active++;

}

if (active == 0) future.weAreDone();

FutureForkJoin<FutureResponse> fp = new FutureForkJoin<FutureResponse>(1, futureResponses);

fp.addListener(new BaseFutureAdapter<FutureForkJoin<FutureResponse>>() {

@Override

public void operationComplete(FutureForkJoin<FutureResponse> future) 

throws Exception {

boolean finished = evaluate(future);

if(finished) future.weAreDone();

else recLoop(future);

}

});

}
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Fundamental Concepts

 Java 8 lambda expressions not used

 .NET and other languages have better support for async

 Example
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Fundamental Concepts

 API Overview: Peer.java

 Core methods, network related

 sendDirect()

 bootstrap()

 announceShutdown()

 ping()

 discover()

 broadcast()

 Methods for DHTs (PeerDHT.java)

 put(key, value)

 get(key)

 add(key)

 digest(key)

 remove(key)

 send(key)

 parallelRequest(key) // mostly used internally
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Fundamental Concepts

 Extensions

 TomP2P can store multiple values for a key

 put() (location_key, content_key, value) → content_key

specified in Builder

 get().all()

→ returns a map with [content_key, value]

 add() (location_key, value) → is translated to

put() (location_key, hash(value), value)

 TomP2P support domains

 Avoid collision for same keys

 Domains are used for protection (more details later)

 Domains specified in Builder

 put() (key, domain, value) → get() (key,domain)
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Fundamental Concepts 4.x

 Configurations Example

 Configuration with builder pattern

 System-wide configuration when creating Peer
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5. Components with Examples

DHT

Tracker
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Components with Examples (repetition)

 DHT vs. Tracker

M03, slide 27: DHT “stored by value” – direct storage

M03, slide 28: Tracker “stored by reference” – indirect storage

indirect (Tracker) direct (DHT)
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Components with Examples

 B-Tracker

 Centralized tracker – one machine gets traffic

 DHT: store reference on 20 peers – 20 peers gets traffic

 PEX: exchange information every minute (push)

 B-Tracker, every downloading peer becomes a tracker → forms mesh

 Better balance of load

 To avoid duplicates send compressed list of known peers

 B-Tracker in TomP2P enabled by default
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Components with Examples

 Demo: Tracker (net.tomp2p.examples.ExampleTracker)

 Create 100 peers, 

 Add to tracker, get from tracker

 Stored on 3 peers: TrackerBuilder.java (can be configured)

 Attachment of data is possible (attachement(Data))
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Components with Examples

 Demo: Tracker

 Although demo uses await(), try not to use it

 Tracker vs. DHT what is better for the CT? You decide!

 Further interesting aspects for the challenge task: 

 To be discussed on Thursday

 Reminder: Thursday starts the challenge task

 Task presentation and Scrum introduction
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5. Bloom Filters
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Traditional Bloom Filter

 An array of m bits, initially all bits set to 0

 A bloom filter uses k independent hash functions

 h1, h2, …, hk with range {1, …, m}

 Each key is hashed with every hash function

 Set the corresponding bits in the vector

 Operations

 Insertion

 The bit A[hi(x)] for 1 < i < k are set to 1

 Query

 Yes if all of the bits A[hi(x)] are 1, no otherwise

 Deletion

 Removing an element from this simple Bloom filter is impossible
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Insertion of an Element

Strings

Hash Functions

Bloom Filter
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Query of an Element, m=18, k=3

 Insert x, y, z

 Query w

http://en.wikipedia.org/wiki/Bloom_filter
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Properties

 Space Efficiency

 Any Bloom filter can represent the entire universe of elements

 In this case, all bits are 1

 No Space Constraints

 Add never fails

 But false positive rate increases steadily as elements are added

 Simple Operations

 Union of Bloom filters: bitwise OR

 Intersection of Bloom filters: bitwise AND
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False-Positive Probability

 No false negative, but false positive

 False-positive probability:

 n number of strings; k hash functions; m-bit vector

=> Given m/n, there is an optimal

number of  hash functions (opt. k = m/n ln 2)

(when 50% of  the bits are set)
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Examples

 Example for False-positives

 Insertions

 Hash („color printer“) => (1,4,6)

 Hash („digital camera“) => (3,4,5)

 Bloom filter (1,3,4,5,6)

 Query

 Hash („heat sensor“) => (3,4,6)

 Matches since bits 3,4,6 are all set to 1

 Online

 False-negative

 Query 

 Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6) → no false-negative

http://billmill.org/bloomfilter-tutorial/
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Bloom Filter Variants (1)

 Compressed Bloom Filters

When the filter is intended to be passed as a message

 False-positive rate is optimized for the compressed bloom filter 

(uncompressed bit vector m will be larger but sparser)

 However, compression/decompression, more memory

 Generalized Bloom Filter

 Two type of hash functions gi (reset bits to 0) 

and hj (set bits to 1)

 Start with an arbitrary vector (bits can be either 0 or 1)

 In case of collisions between gi and hj, bit is reset to 0

 Store more bits with low false positive

 Produces either false positives or false negatives

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf
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Bloom Filter Variants (2)

 Counting Bloom Filters

 Entry in the filter not be a single bit but a counter

 Delete operation possible (decrementing counter)

 Variable-Increment Counting Bloom Filter

 Scalable Bloom Filter

 Adapt dynamically to number of elements, consist of regular Bloom 

filters

 “A SBF is made up of a series of one or more (plain) Bloom Filters; 

when filters get full due to the limit on the fill ratio, a new one is added; 

querying is made by testing for the presence in each filter”

http://webee.technion.ac.il/people/or/publications/Infocom12_VICBF.pdf
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
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Example and Applications

 Demo

 Setup: Bloom Filter of size 128 bits, 20 Number160 objects

 Applications: Distributed Caching, Spell checking, 

Routing, (distributed) Databases

 B-Tracker uses Bloom Filters

 “To avoid duplicates send compressed list of known peers”

 Idea: store peers in Bloom Filter and send it. Other peers only send us 

peer not in the Bloom Filter

 Less traffic (request is larger, reply may be smaller)

 False positive are possible

 Demo: Bloom Filter for get() in TomP2P


