
1P2P with TomP2P

Lecture 5

P2P with TomP2P

http://tomp2p.net

*Original slides for this lecture provided by David Hausheer (TU Darmstadt, Germany), Thomas Bocek, Burkhard Stiller

(University of Zürich, Department of Informatics, Communication Systems Group CSG, Switzerland,

2P2P with TomP2P

0. Lecture Overview

1. Introduction

1. What is TomP2P

2. History and project information

2. Example

3. Fundamental concepts

1. XOR-based iterative routing

2. Futures

3. API Overview

4. Components with examples

1. DHT with examples

2. Tracker / PEX with examples

5. Advanced Topics in TomP2P

1. Bloom Filters

3P2P with TomP2P

P2P in the news

 14.03.2016 Starker Auftritt der Schweizer IT-Industrie

an der weltweit grössten Computermesse. Aber auch

die Konkurrenz schläft nicht.

 Coinblesk @CeBIT

 Currently: 2 MA (Andreas, Alessandro), 1 BA (Christian)

 09.03.2016 UZH an der CeBIT 2016: Schnell und sicher

mit Bitcoins mobil bezahlen

 17.03.2016 Blitzschnelle Bitcoins

 14.03.2016 Ethereum Blockchain Project Launches

First Production Release

 Fundamental change in the protocol makes older versions

incompatible → hard fork

 Bitcoin Classic vs. Core

http://www.inside-it.ch/articles/43229
https://bitcoin.csg.uzh.ch/
http://www.mediadesk.uzh.ch/articles/2016/uzh-an-der-cebit-2016-schnell-und-sicher-mit-bitcoins-mobil-bezahlen.html
http://www.news.uzh.ch/de/articles/2016/Blitzschnelle-Bitcoins.html
http://www.coindesk.com/ethereum-blockchain-homestead/

4P2P with TomP2P

1. Introduction

What is TomP2P

History and project information

5P2P with TomP2P

Introduction

 TomP2P is a P2P framework/library

 Implements DHT (structured), broadcasts ([un]structured), direct

messages (can implement super-peers)

 NAT handling: UPNP, NATPMP, new addition: relays, hole punching

(work in progress)

 Direct / indirect (tracker / mesh) storage

 Direct / indirect replication (churn prediction and ~rsync)

 Modes: key,value / multi-key (versioned) value

 Java 6, Maven, Github, Netty, TCP/UDP, MapDB, (Android)

https://github.com/tomp2p/TomP2P

6P2P with TomP2P

Introduction

 TomP2P extends DHT

 Distributed hash table concept → put(key,value) / get(key)

 Extended DHT operations →

 put(key1,key2,value)

 put prepare / put confirm

 add(value)

 digest(key) / bloomfilters / versions

 get(key) + bloomfilters

7P2P with TomP2P

Introduction

 TomP2P history

 TomP2P v1: Created in 2004 and used for a distributed DNS project

 This version used blocking IO operations (1 thread / socket)

 TomP2P v2: Apache MINA (java.nio framework) / 6K LoC

 Not well designed for non-blocking operations (event-driven)

 TomP2P v3: Redesigned for non-blocking operations

 Switched to Netty / 14K LoC, 6K LoC JUnits

 TomP2P v4: API refinements, new features

 Latest feature (work in progress) MapReduce

 19K LoC (core), 6K LoC JUnits (core)

 TomP2P v5 (core 18K LoC): modularization, relays, API refinements

8P2P with TomP2P

Introduction

 TomP2P started in 24.05.2004

 Github: watch 34 / star 192 / fork 68 (not sure if good/bad)

 TomP2P website (although documentation is outdated)

 75 users on the

mailinglist

 11 contributors on

github

 Don’t buy the book!

https://github.com/tomp2p/TomP2P
https://github.com/tomp2p/TomP2P/graphs/contributors

9P2P with TomP2P

Introduction

 Academic background (CSG - UZH):

 Used in EU projects: EC-GIN, Emanics, SmoothIT, SmartenIT, Flamingo

 Used in research projects: LiveShift, DRFS, Radiommender, Box2Box,

Hive2Hive, B-Tracker, PiCsMu, peerwasp, (and non-academic)

 http://tomp2p.net

 For questions: mailinglist (http://lists.tomp2p.net/cgi-bin/mailman/listinfo)

 Specific questions: bocek -at- ifi.uzh.ch or tom -at- tomp2p.net

 Documentation: http://tomp2p.net/doc/ (TomP2P v4.4)

Overview: http://en.wikipedia.org/wiki/TomP2P

 If something is missing, ask! – Documentation for v5 is missing!

 Development: https://github.com/tomp2p

 Feature request possible if good reasons provided

 (Demo: how to setup TomP2P with Netbeans/git/maven)

http://www.csg.uzh.ch/research/previous-projects/liveshift.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5372781&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6335817
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6688736
http://hive2hive.com/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6038749
http://pics.mu/
http://www.peerwasp.com/
http://tomp2p.net/
http://lists.tomp2p.net/cgi-bin/mailman/listinfo

10P2P with TomP2P

Introduction

 A Declarative Interface for Smart-phone Based Sensor

Network Systems, Asanka Sayakkara and Kasun De

Zoysa, IWMS 2012, Bejing, China

 Hybrid Peer-to-Peer DNS, Ricardo Sancho and Ricardo

Lopes Pereira, Instituto Superior Tecnico, Porto,

Portugal

 A Semantic Publish-Subscribe Coordination Framework

for IHE based Cross-Community Health Record

Exchange, Visara Urovi, Alex C. Olivieri, Stefano

Bromuri, Nicoletta Fornara, Michael Schumacher, ACM

SIGAPP Applied Computing Review, 2013 (slides)

http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/papers/msispn-sayakkara.pdf
http://research.microsoft.com/en-us/um/beijing/events/ms_ipsn12/
https://fenix.tecnico.ulisboa.pt/downloadFile/395145923129/main.pdf
http://delivery.acm.org/10.1145/2540000/2537732/p38-urovi.pdf?ip=130.83.106.155&id=2537732&acc=ACTIVE SERVICE&key=2BA2C432AB83DA15.24DDBA2ADC8180AB.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=417454326&CFTOKEN=47199322&__acm__=1394023877_e33a11424615ce6fd5f1de6368cb3abc
http://doc.rero.ch/record/209307
http://www.slideshare.net/IIG_HES/a-peer-to-peer-agent-coordination-framework-for-ihe-based-crosscommunity-health-record-exchange

11P2P with TomP2P

Introduction

 Adding Cryptographically Enforced Permissions to Fully

Decentralized File Systems – TUM, Bernhard Amann,

Thomas Fuhrmann, April 2011

 Optimis FP7 IP project: Optimized Infrastructure

Services, D1.2.1.3, Architecture Design document,

ended May 2013

 Distributed Name-based Entity Search, Fausto

Giunchiglia and Alethia Hume, ISWC 2012, Boston

 A Distributed Directory System, Fausto Giunchiglia and

Alethia Hume, SSWS 2013, Sydney

http://mediatum.ub.tum.de/doc/1094233/1094233.pdf
http://optimistoolkit.com/assets/docs/d1213-architecture-design.pdf
http://eprints.biblio.unitn.it/4016/1/techrep033.pdf
http://iswc2012.semanticweb.org/
http://www.ssws-ws.org/SSWS2013/program.html

12P2P with TomP2P

Introduction

 A P2P Semantic Query Framework for the Internet of

Things, Richard Mietz, Sven Groppe, Oliver Kleine,

Daniel Bimschas, Stefan Fischer, Kay Römer and

Dennis Pfisterer, PIK, Volume 36, Issue 2 (May 2013)

 P2P Minecraft: “The mods described below are about

adding peer-to-peer functionalities to Minecraft.”

 Bitcoin Gateway - A Peer-to-peer Bitcoin Vault and

Payment Network, Omar Syed & Aamir Syed, July 2011

 Bitsquare.io – The decentralized bitcoin exchange,

switched to Tor

http://www.degruyter.com/view/j/piko-2013-36-issue-2/pik-2013-0006/pik-2013-0006.xml
http://www.minecraftforum.net/topic/1848364-152forgeapi-peer-to-peer-p2p-sspsmp/
http://arimaa.com/bitcoin/
http://arimaa.com/bitcoin/BitcoinGateway20110726.pdf
https://bitsquare.io/

13P2P with TomP2P

Introduction

 TomP2P with Android (early research)

 CSG: early adopter

 TomP2P 5 and Android:

work in progress

14P2P with TomP2P

2. Example

Example and Demo

15P2P with TomP2P

Example

 Demo: a simple put / get example

 Package net.tomp2p.examples. ExamplePutGet

 Defaults

 Replication factor 6, replication not enabled,

 domain, content, version are zero if not specified

16P2P with TomP2P

3. Fundamental Concepts

XOR-based iterative routing

Futures

API Overview

17P2P with TomP2P

Fundamental Concepts (repetition)

 Recursive routing vs. iterative routing

+ online status update

- faulty peers cause delay

+ control

- neighbor maintenance

18P2P with TomP2P

Fundamental Concepts (repetition)

 TomP2P: iterative XOR-based routing

 Node and data item unique 160bit identifier

 Keys are located on the nodes whose node ID is closest to the key

 Search for a key:

 Lookup in neighbor table for

closest peer (e.g. peers with ID: 0x1,

0x2, 0x3, 0x4)

 Difference to Pastry: one metric,

no leaf set / routing table

My ID Neighbor

ID

Distance

(XOR)

1 2 3

1 3 2

1 4 5

19P2P with TomP2P

Fundamental Concepts

 TomP2P iterative XOR-based routing

 Neighbors stored in 159 “bags”, bag has capacity c (Kademlia, c=20)

 Routing takes O(log n) → M03, slides 15

 By default UDP, message header 63 bytes

 Routing Mechanism variables, can be tuned

 directHits, potentialHits – routing sends digest

 forceTCP – use TCP instead of UDP

 maxDirectHits, maxNoNewInfo, maxSuccess, maxFailure – stop

conditions

 parallel – number of parallel connections

 For the CT - don’t worry, default settings are fine 

20P2P with TomP2P

Fundamental Concepts

 Distributed operations use futures (~promises, Guava)

 Future objects

 Keeps track of future events, while the “normal” program flow

continues → addListener() or await()

 await(): Operations are executed in same thread

 addListener(): Operations are executed in same or other thread

 Demo: blocking operation (net.tomp2p.examples.

ExamplePutGet)

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/util/concurrent/ListenableFuture.html

21P2P with TomP2P

Fundamental Concepts

 Demo: non - blocking operation (net.tomp2p.examples.

ExamplePutGet)

 New utilities necessary (loops as recursions)

 Advise: use addListener(…) as much as possible!

 operationComplete(…) must be always called (problem if not)

https://github.com/netty/netty/issues/3449

22P2P with TomP2P

Fundamental Concepts

 Future utilities

 FutureForkJoin(int nr, boolean cancel, K... Forks)

 Joins already “forked” futures. Waits until all or nr future finished. If nr

reached, futures may be cancelled (e.g. abort download)

 FutureLateJoin(int nrMaxFutures, int minSuccess)

FutureLaterJoin()

 No need to add the futures in the constructor, can be added later

 FutureDone()

 A generic future used in many places, can be placeholder

 ForkJoin in Java7

 Fork and join framework – future utilities in TomP2P focus on join,

forking is done “manually”

 Needs face-lifting, Java8 with CompletableFuture

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

23P2P with TomP2P

Fundamental Concepts

 Fun with futures: loops
Future loop() {

Future future = new Future();

recLoop(future);

return future;

}

void recLoop(Future future) {

int active = 0;

for (int i = 0; i < parallel; i++) {

//if future finished, it will be set to null

if (futureResponses[i] == null) {

active++;

futureResponses[i] = doSomething();

}

else if (futureResponses[i] != null) active++;

}

if (active == 0) future.weAreDone();

FutureForkJoin<FutureResponse> fp = new FutureForkJoin<FutureResponse>(1, futureResponses);

fp.addListener(new BaseFutureAdapter<FutureForkJoin<FutureResponse>>() {

@Override

public void operationComplete(FutureForkJoin<FutureResponse> future)

throws Exception {

boolean finished = evaluate(future);

if(finished) future.weAreDone();

else recLoop(future);

}

});

}

24P2P with TomP2P

Fundamental Concepts

 Java 8 lambda expressions not used

 .NET and other languages have better support for async

 Example

25P2P with TomP2P

Fundamental Concepts

 API Overview: Peer.java

 Core methods, network related

 sendDirect()

 bootstrap()

 announceShutdown()

 ping()

 discover()

 broadcast()

 Methods for DHTs (PeerDHT.java)

 put(key, value)

 get(key)

 add(key)

 digest(key)

 remove(key)

 send(key)

 parallelRequest(key) // mostly used internally

26P2P with TomP2P

Fundamental Concepts

 Extensions

 TomP2P can store multiple values for a key

 put() (location_key, content_key, value) → content_key

specified in Builder

 get().all()

→ returns a map with [content_key, value]

 add() (location_key, value) → is translated to

put() (location_key, hash(value), value)

 TomP2P support domains

 Avoid collision for same keys

 Domains are used for protection (more details later)

 Domains specified in Builder

 put() (key, domain, value) → get() (key,domain)

27P2P with TomP2P

Fundamental Concepts 4.x

 Configurations Example

 Configuration with builder pattern

 System-wide configuration when creating Peer

28P2P with TomP2P

5. Components with Examples

DHT

Tracker

29P2P with TomP2P

Components with Examples (repetition)

 DHT vs. Tracker

M03, slide 27: DHT “stored by value” – direct storage

M03, slide 28: Tracker “stored by reference” – indirect storage

indirect (Tracker) direct (DHT)

30P2P with TomP2P

Components with Examples

 B-Tracker

 Centralized tracker – one machine gets traffic

 DHT: store reference on 20 peers – 20 peers gets traffic

 PEX: exchange information every minute (push)

 B-Tracker, every downloading peer becomes a tracker → forms mesh

 Better balance of load

 To avoid duplicates send compressed list of known peers

 B-Tracker in TomP2P enabled by default

31P2P with TomP2P

Components with Examples

 Demo: Tracker (net.tomp2p.examples.ExampleTracker)

 Create 100 peers,

 Add to tracker, get from tracker

 Stored on 3 peers: TrackerBuilder.java (can be configured)

 Attachment of data is possible (attachement(Data))

32P2P with TomP2P

Components with Examples

 Demo: Tracker

 Although demo uses await(), try not to use it

 Tracker vs. DHT what is better for the CT? You decide!

 Further interesting aspects for the challenge task:

 To be discussed on Thursday

 Reminder: Thursday starts the challenge task

 Task presentation and Scrum introduction

33P2P with TomP2P

5. Bloom Filters

34P2P with TomP2P

Traditional Bloom Filter

 An array of m bits, initially all bits set to 0

 A bloom filter uses k independent hash functions

 h1, h2, …, hk with range {1, …, m}

 Each key is hashed with every hash function

 Set the corresponding bits in the vector

 Operations

 Insertion

 The bit A[hi(x)] for 1 < i < k are set to 1

 Query

 Yes if all of the bits A[hi(x)] are 1, no otherwise

 Deletion

 Removing an element from this simple Bloom filter is impossible

35P2P with TomP2P

Insertion of an Element

Strings

Hash Functions

Bloom Filter

36P2P with TomP2P

Query of an Element, m=18, k=3

 Insert x, y, z

 Query w

http://en.wikipedia.org/wiki/Bloom_filter

37P2P with TomP2P

Properties

 Space Efficiency

 Any Bloom filter can represent the entire universe of elements

 In this case, all bits are 1

 No Space Constraints

 Add never fails

 But false positive rate increases steadily as elements are added

 Simple Operations

 Union of Bloom filters: bitwise OR

 Intersection of Bloom filters: bitwise AND

38P2P with TomP2P

False-Positive Probability

 No false negative, but false positive

 False-positive probability:

 n number of strings; k hash functions; m-bit vector

=> Given m/n, there is an optimal

number of hash functions (opt. k = m/n ln 2)

(when 50% of the bits are set)

39P2P with TomP2P

Examples

 Example for False-positives

 Insertions

 Hash („color printer“) => (1,4,6)

 Hash („digital camera“) => (3,4,5)

 Bloom filter (1,3,4,5,6)

 Query

 Hash („heat sensor“) => (3,4,6)

 Matches since bits 3,4,6 are all set to 1

 Online

 False-negative

 Query

 Hash (“color printer”) => (1,4,6) , matches (1,3,4,5,6) → no false-negative

http://billmill.org/bloomfilter-tutorial/

40P2P with TomP2P

Bloom Filter Variants (1)

 Compressed Bloom Filters

When the filter is intended to be passed as a message

 False-positive rate is optimized for the compressed bloom filter

(uncompressed bit vector m will be larger but sparser)

 However, compression/decompression, more memory

 Generalized Bloom Filter

 Two type of hash functions gi (reset bits to 0)

and hj (set bits to 1)

 Start with an arbitrary vector (bits can be either 0 or 1)

 In case of collisions between gi and hj, bit is reset to 0

 Store more bits with low false positive

 Produces either false positives or false negatives

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/LVD05d.pdf

41P2P with TomP2P

Bloom Filter Variants (2)

 Counting Bloom Filters

 Entry in the filter not be a single bit but a counter

 Delete operation possible (decrementing counter)

 Variable-Increment Counting Bloom Filter

 Scalable Bloom Filter

 Adapt dynamically to number of elements, consist of regular Bloom

filters

 “A SBF is made up of a series of one or more (plain) Bloom Filters;

when filters get full due to the limit on the fill ratio, a new one is added;

querying is made by testing for the presence in each filter”

http://webee.technion.ac.il/people/or/publications/Infocom12_VICBF.pdf
http://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf

42P2P with TomP2P

Example and Applications

 Demo

 Setup: Bloom Filter of size 128 bits, 20 Number160 objects

 Applications: Distributed Caching, Spell checking,

Routing, (distributed) Databases

 B-Tracker uses Bloom Filters

 “To avoid duplicates send compressed list of known peers”

 Idea: store peers in Bloom Filter and send it. Other peers only send us

peer not in the Bloom Filter

 Less traffic (request is larger, reply may be smaller)

 False positive are possible

 Demo: Bloom Filter for get() in TomP2P

