
1P2P with TomP2P nodejs2.csg.uzh.ch:8080

Lecture 6

P2P with TomP2P

Advanced Topics

*Original slides for this lecture provided by David Hausheer (TU Darmstadt, Germany), Thomas Bocek, Burkhard Stiller (University

of Zürich, Department of Informatics, Communication Systems Group CSG, Switzerland, Jonas Wagner, Sebastian Golaszewski

(Student UZH)

2P2P with TomP2P nodejs2.csg.uzh.ch:8080

P2P in the news

 4.4.2016 – Alpha testing of SmartCRS

 Student Project (Till Salinger)

 WebRTC based classroom response system

 26.3.2016 - Java Opus and H264 Wrapper

 Tested on OSX, Linux, Win?

 Audio: Opus 1.1.2 (native, JNA), Video H264 (pure Java), Webcam

grabber (native, OpenIMAJ , BridJ)

 Run AudioVideoExample.java

 4.4.2016 - OpenBazaar Team Releases First Version of

Decentralized Marketplace

 Decentralized marketplace using Bitcoin

 …Fully peer-to-peer marketplace where buyers and sellers engage in

trade directly with each other…

 Direct payment / moderated (escrow) payment

http://nodejs2.csg.uzh.ch/
https://github.com/tbocek/opus-h264-webcam-wrapper
https://blog.openbazaar.org/openbazaar-is-open-for-business/

3P2P with TomP2P nodejs2.csg.uzh.ch:8080

P2P in the news

 30.3.2016 - The Trouble with Tor

…Based on data across the CloudFlare network, 94% of requests that

we see across the Tor network are per se malicious…

…A large percentage of the comment spam, vulnerability scanning,

ad click fraud, content scraping, and login scanning comes via the Tor

network…

 31.3.2016 - The Trouble with CloudFlare

 ... CloudFlare has not described the nature of the IP reputation

systems they use in any detail…

 Akamai report:…Tor IP addresses clicking on ads and performing

commercial activity was "virtually equal“ to that of non-Tor IP

addresses).…

https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.torproject.org/blog/trouble-cloudflare

4P2P with TomP2P nodejs2.csg.uzh.ch:8080

0. Lecture Overview

1. Advanced Topics in TomP2P

1. Mechanisms based on Hashing in DHTs

1. And/Or Searches

2. Similarity Searches

3. Range Queries

2. Connectivity, Security, and Robustness

1. NAT (UPNP/NAT-PMP/Hole punching)

2. Security

3. Replication

4. Direct data connection / persistent connection

3. Consistency

1. Paxos

2. vDHT

4. Rsync

5P2P with TomP2P nodejs2.csg.uzh.ch:8080

1. Mechanisms based on Hashing in DHTs

And / or searching

Similarity Search

Range queries

6P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Search in DHT

 DHT.get(h(„Communication Systems Group“))

 In order to find it: DHT.put(h(„Communication Systems

Group“), value)

 Keywords

 DHT.get(h(„Communication“))

 Find it: DHT.put(h(„Communication“), value),

DHT.put(h(„Systems“), value), DHT.put(h(„Group“),

value)

 value points to h(„Communication Systems Group“)

 Keywords drawbacks

 Find good keywords → “the”, “a” are not good keywords

 Exact matches only

7P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Find “Communication” - OR Systems

 DHT.get(h(„Communication“)) and

DHT.get(h(„Systems“)), combine results

 Find “Communication” - AND Systems

 1. DHT.get(h(„Communication“)) and

DHT.get(h(„Systems“)), intersect results

 Overhead – use Bloom Filters (sequential vs. parallel)

 2. DHT.get(h(„Communication“) xor h(„Systems“))

 In order to find it: DHT.put(h(„Communication“) xor

h(„System“), value), DHT.put(h(„Communication“) xor

h(„Group“), value), DHT.put(h(„Group“) xor h(„System“),

value)

 Combination needs to be known in advance

8P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Demo

 Keywords

 Performance issue → consistent hashing (aggregation)

 Performance issue: Aggregation not done in TomP2P

 Routing aggregation?

9P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Range Queries

 Problem: random insert vs. sequence insert

Max. nr of items (n), nr of items per peer (m)

 Sequence → [0..n] [n..2n] [2n..3n] […] → peer responsible for range,

hash it, store it, done.

 But random: worst case: 1 peers has 1 data item, range query for range

[0..x] contacts x/n peers.

 Over-DHT

 PHT: trie (prefix tree); DST: segment → tree on top of DHT

Main idea: hash of tree-node (resp. for range) → DHT

 PHT: Peer stores n data items, if n reached, splits data (moves data

across peers)

 DST: stores data on each level (redundancy) up to a threshold

 No data splitting

10P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Example:

 Set n = 2, m=8

 1, “test”; 2, “hallo”; 3, “world”; 5, “sys”

 Tree: store value

 Translate putDST(1, “test”) to

 put(hash([1-8]),”test”)

→ may be stored (only if

threshold not reached)

 put(hash([1-4]),”test”) → may be stored

 put(hash([1-2]),”test”) → will be stored

 Store put(3, “world”), put(2, “hallo”) and put(5, “sys”)

11P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Query getDST(1..5) translates to

 get(hash[5-6]) → returns “sys”

 get(hash[1-4]) → returns “test”, “world” and tells us that

threshold has been reached

 get(hash[1-2]) → returns “hallo”, “test”

 get(hash[3-4]) → returns “world”

 Range query as series of put() and get()

 Demo

 Storage modification

12P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Similarity Search in DHT

 http://fastss.csg.uzh.ch

 Project that brings similarity search to HT / DHT

 Problem: Search for “netwrk” fails for DHTs

 Similarity: Edit distance / Levenshtein distance

Min operations to transform one string into another, operations: insert,

delete, replace

 Calculated in matrix size O(m x n)

http://fastss.csg.uzh.ch/

13P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Example d(test,east) = 2 (remove a, insert t)

 Expensive operation if all words need testing

 Main idea: pre-calculate errors

 All possible errors? Neighbors for test with ed 2: test, testa, testaa,

testab, ... , tea, teb, tec, ..., teaa, teab, ... → 23883 more of those!

T E S T

0 1 2 3 4

E 1 1 1 2 3

A 2 2 2 2 3

S 3 3 3 2 3

T 4 3 4 3 2

14P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 FastSS pre-calculates with deletions only

 Neighbors for test with ed 2: test, est, st, et, es, tst, tt, ts, tet, te, tes

 Pre-calculation on query and index

 11 neighbors → 11 more queries, indexed enlarged by 11 entries

 Example d(test,fest)=1 (query) (index)

15P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Example d(test,east)=2 (query) (index)

 P2PFastSS implemented on top of TomP2P (early

version) – tests with indexing Wikipedia abstracts

16P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Index documents using

put(hash(document),

document)

 Document (0x321) contains word

test

 Index all neighbors (test, tes,

tst, tet, est) using

put(hash(neighbor),

point to document)

 hash(“tes”) = 0x123

17P2P with TomP2P nodejs2.csg.uzh.ch:8080

 User searches for “tesx”

 Neighbors are generated

(tesx, esx, tsx, tex, tes)

 get(hash(neighbor)) → 0x123

 Find pointer to document

(0x321)

 document = get(0x321)

 Tests with edit distance 1,

partially 2, ignoring delete pos.

 Overhead (n choose k) for query and index

 Similarity search as series of put() and get()

 Demo

Mechanisms based on Hashing in DHTs

18P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Direct data and persistent connections (data download)

 All connections in TomP2P are RPC and very short-lived

 Open connection – request – reply – close connection

 Direct sendDirect(PeerAddress, …) / with routing send(key,…)

 Always use setObjectDataReply() or setRawDataReply()

 Object serializes object to byte[] (easy)

 Raw exposes (Netty) buffer to the user for your own protocol (more work)

 Persistent connections set by the user

 Only for direct send sendDirect(PeerAddress, …)

 Demo with persistent connections

(net.tomp2p.examples.ExamplePersistentConnection)

19P2P with TomP2P nodejs2.csg.uzh.ch:8080

2. Connectivity, Security, and Robustness

NAT (UPNP/NAT-PMP/Hole punching)

Security

Replication

20P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 NAT

 Network Address Translation – breaks end-to-end

 “If nothing else, [NAT] can serve to provide temporarily relief while

other, more complex and far-reaching solutions are worked out”

(RFC 1631 - The IP Network Address Translator (NAT))

 Easy solution:

Manual port forwarding: e.g., setup on your router

21P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Easy solution: UPNP / NAT-PMP

 Both configure port forwarding, but UPNP is more: discover devices -

uses broadcasting to find router (Simple Service Discovery Protocol)

 UPNP: configure devices - uses HTTP and XML to configure port

forwarding (Internet Gateway Device Protocol)

 NAT-PMP: protocol made for configuring port-forwarding, but no

discover (how to find router?)

22P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 NAT example in TomP2P

 TomP2P supports NAT-PMP and UPNP, holepunching, and relaying

 Before bootstrap: peer.discover(PeerAddress);

 How it works: (1) send request how others peers sees our IP

 If other peers sees the same IP as we see, we are fine

 If not, we are most likely behind a NAT

 (2) do UPNP, if it fails, do NAT-PMP, if it fails, mark it as firewalled,

setup relays / rendez-vous

 (3) If it works test connection, send request to other peer to contact us

using the port we just set up.

 (4) If we get contacted by this peer within 5 sec, port-forwarding

works.

Manual setup possible using Bindings.java

23P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Difficult solution: hole punching

 rendezvous / relay peer which does “hole punching”, in worst case

relay traffic.

 NAT: translation table for private / public network

IP: 200.2.2.2

Port: 4321

IP : 10.0.0.2

Port: 1234

NAT

10.0.0.1

100.1.1.1

Private Network Public Network

NAT Table Entry: (10.0.0.2:1234, 200.2.2.2:4321; 200.2.2.2:4321, 100.1.1.1:3333)

24P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness: Hole punching

 1) Peer1 initiates a new connection trial to peer2 via relay and signals its

source ports and IP (relay/rendez-vous peer has connection to URP2)

 2) Peer2 answers back with its source ports and IP

 3) Both of the peers punch holes into their firewall/NAT

 4) Established a connection

Relay Peer

Unreachable

Peer 2

NAT

Unreachable

Peer 1

NAT

1 2

3

4

25P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Hole punching

 Unreachable peer 1 request to NAT 4.5.6.7, will fail – no mapping,

however, unreachable peer 1 creates mapping with that request

 Unreachable peer 2 sends request to unreachable peer 1 (1.2.3.4:Y)

success!
NAT

1.2.3.4

NAT

4.5.6.7

URP1

192.168.1.2

URP2

10.0.0.2

Mapping for NAT 1.2.3.4 (Unreachable peer 1)

192.168.1.2:4000 … 1.2.3.4:Y 4.5.6.7:Z

Mapping for NAT 4.5.6.7 (Unreachable peer 2)

10.0.0.2:5000 … 4.5.6.7:Z 1.2.3.4:Y

NAT

1.2.3.4

NAT

4.5.6.7

Rendezvous

8.9.0.1

URP1

192.168.1.2

URP2

10.0.0.2

26P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Hole Punching (BA Jonas Wagner)

 Currently: network namespaces (since 2.6.24)

NAT

1
NAT

2

RELAY
PEER 1

PEER 2
Router to CSG

Network

27P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 If everything fails, use relays

Well connected / reachable peer

 Forwards the data to and from the unreachable peer

 Relay candidates are close neighbors

Will be added to your PeerAddress

 Other peers will see the relay from the peer address, contact them

 Up to 5 relay peers

 Relays keep TCP connection open

 UDP messages (ping / neighbor) handled by relays itself

 Unreachable peer must update information for relays to be able to

handle request

28P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Security in TomP2P (best-effort security)

 Signature-based, no data encryption

Messages are signed using SHA1 with DSA

 Sybil attacks!

 This attack creates large number of identities, may collude

 How to prevent Data from being overwritten

 Domain and entry protection, requires cooperation

 StorageLayer.protectionDomainMode(…)

For domains and entries

protectionEnabled ALL NONE

protectionMode NO_MASTER MASTER_PUBLIC_KEY

29P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Domain protection

 Set publick key new PeerMaker(PublicKey)

 Enable=ALL, Mode=NO_MASTER → every peer can protect domains,

first come first served

 Enable=NONE, Mode=NO_MASTER → no peer can protect domains

 Enable=ALL, Mode=MASTER_PUBLIC_KEY → every peer can protect

domains, the owner can claim domain

 Enable=NONE, Mode=MASTER_PUBLIC_KEY → no peer can protect

domains except the owner

 Owner of domain 0x1234 is peer where 0x1234 == hash(public_key)

 Same concept for entries

 Tracker should have no domain protection and content protection set

to Enable=NONE, Mode=MASTER_PUBLIC_KEY → WiP

 Demo

30P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Demo 1 (net.tomp2p.examples.ExampleDomainProtection):
 3 peers, all with public keys

 Setup for domains: Enable=ALL, Mode=MASTER_PUBLIC_KEY

 (1) peer1 stores data in domain2 → success

 (2) peer3 wants to store data in domain2 → fail

 (3) peer2 wants to store data in domain2 → success

 Demo 2 (net.tomp2p.examples.ExampleDomainProtection):
 3 peers, all with public keys

 Setup for domains: Enable=NONE, Mode=MASTER_PUBLIC_KEY

 (1) peer1 stores data in domain2 → success

 (2) peer3 wants to store data in domain2 → success

 (3) peer2 wants to store data in domain2 → success

 (4) peer3 wants to store data in domain2 → fail

 TomP2P + Bitcoin Blockchain (former master project, not yet
merged)

31P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Replication

 Enough replicas

 Direct replication

 Originator peer is responsible

 Periodically refresh replicas

 Example: tracker that announces its data

• Problem

 Originator offline → replicas

disappear. Content has TTL,

e.g.

data.ttlSeconds(15)

32P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Indirect Replication

 The closest peer is responsible,

originator may go offline (0Root)

 Periodically checks if enough

replicas exist

 Detects if responsibility changes

• Problem

 Requires cooperation between

responsible peer and originator

 Multiple peers may think they are

responsible for different versions →

eventually solved

 Replication Demo (net.tomp2p

.examples.ExampleDirectReplication)nRoot (default is 0Root)

33P2P with TomP2P nodejs2.csg.uzh.ch:8080

3. Consistency

Paxos

vDHT

34P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 DHTs have weak consistency

 Peer A put X.1, Peer B gets X.1 modifies it puts B.2

 Same time: Peer C gets X.1 modifies it puts C.2

 Which one is stored B.2 of B or C.2 of C?

 Consistency generic issue in distributed systems

 Coordinator required:

 easy solution: centralized

 Interesting solution: decentralized, in case failed peer, pick another peer

 Coordinator needs to be defined

 Election, example Paxos

https://www.youtube.com/watch?v=JEpsBg0AO6o&feature=youtu.be

35P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 Paxos

 Protocol family for consensus (multi, cheap, fast, generalized, …)

 Roles: Client/Proposer (requester), Acceptor (voter), Leader

(coordinator), Learner (responder)

 Client sends requests to a proposer

 Proposer send proposal acceptor, send back promise

 If majority promises, send value to acceptor, acceptor sent to learner

 Learner sent result to client

 2 Phases

 Phase 1: prepare

/ promise

 Phase 2: accept

/ accepted

Client Proposer Acceptor Learner

| | | | | | |

X-------->| | | | | | Request

| X--------->|->|->| | | Prepare(1)

| |<---------X--X--X | | Promise(1,{Va,Vb,Vc})

| X--------->|->|->| | | Accept!(1,Vn)

| |<---------X--X--X------>|->| Accepted(1,Vn)

|<---------------------------------X--X Response

| | | | | | |

http://en.wikipedia.org/wiki/Paxos_%28computer_science%29

http://en.wikipedia.org/wiki/Paxos_(computer_science)

36P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 Raft – Alternative to Paxos (easier), three roles: leader,

follower, candidate

 Paxos and DHTs [1], [2]

 Consistency in DHTs – vDHT

 CoW, versions, 2PC, replication, software transactional memory

(STM) → for consistent updates. Works for light churn

https://www.youtube.com/watch?v=YbZ3zDzDnrw
http://www.ist-selfman.org/wiki/images/0/0e/ZIBpaperOnPaxos.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-993.pdf

37P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 vDHT Basics

 No locking, no timestamps (replication time may have an influence)

 Every update – new version

 1. get latest version, check if all replica peers have latest version, if not

wait and try again

 2. put prepared with data and short TTL, if status is OK on all replica

peers, go ahead, otherwise, remove the data and go to step 1.

 3. put confirmed, don’t send the data, just remove the prepared flag

 In case of heavy churn, API user needs to resolve

 Demo: net.tomp2p.examples. ExampleVDHT (new)

 Example: no consistency – traditional put strategy

 Example: vDHT - pessimistic put strategy

38P2P with TomP2P nodejs2.csg.uzh.ch:8080

4. Rsync

Introduction, Example, and Discussion

39P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Introduction

 Rsync used to synchronize data over network

Minimizing data transfer (delta)

 Command line client (standard utility)

 E.g. rsync -aP --link-dest=$HOME/Backups/current /path/to/important_files

$HOME/Backups/back-$date

 Unchanged files are hard linked (--link-dest) → Can be used for

incremental backups

 Main idea

 Receiver compute two checksums (strong, weak) → sent to sender

 Sender computes with weak checksum and checks for known blocks

 Sender verifies with strong checksum → sends difference to receiver

 Example with two peers:

40P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer B does not have the data → peer A copies it to

peer B, no need for rsync

copy

41P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer A modifies data (insert, update)

Wants to synchronize with peer B

modify

42P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer A modifies data (insert, update)

Wants to synchronize with peer B

Send checksums

43P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

44P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer A sends 2 + 8 blocks to peer B

 Peer A and peer B have same data

Send data

45P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Mechanism / Discussion

 If data does not exist → copy

 Use-case: portion of data stays the same

 Replication

 Two checksums for performance (MD5 and Adler-32)

 Collisions possible, but unlikely 2-160

 Rsync in TomP2P (demo)

 If you use CoW, don’t use Rsync!

 net.tomp2p.examples.ExampleRsync (new)

