
1 P2P with TomP2P

Lecture 6

P2P with TomP2P

http://tomp2p.net/doc

 Introduction into P2P

 Peer-to-Peer Systems and Applications, Springer LNCS 3485

*Original slides for this lecture provided by David Hausheer (TU Darmstadt, Germany), Thomas Bocek, Burkhard Stiller

(University of Zürich, Department of Informatics, Communication Systems Group CSG, Switzerland,

2 P2P with TomP2P

0. Lecture Overview

1. Introduction

1. What is TomP2P

2. History and project information

2. Example

3. Fundamental concepts

1. XOR-based iterative routing

2. Futures

3. API Overview

4. Components with examples

1. DHT with examples

2. Tracker / PEX with examples

5. Advanced Topics

1. NAT (UPNP/NAT-PMP)

2. Security

3. Replication

4. SimGrid

5. Direct data / persistent connections

6. Android

6. References

3 P2P with TomP2P

1. Introduction

What is TomP2P

History and project information

4 P2P with TomP2P

Introduction

 TomP2P is an extended DHT

 Distributed hash table concept → put(key,value) / get(key)

 Extended DHT operations →

put(key1,key2,value) / add(key, value)

 TomP2P features (v.4.1)

 Java6 DHT implementation with non-blocking IO

 Replication (direct / indirect)

 Mesh-based distributed tracker

 Stores multiple values for one key (examples follow)

 Storage is memory-based or disk-based

5 P2P with TomP2P

Introduction

 TomP2P history

 TomP2P v1: Created in 2004 and used for a distributed DNS project

 This version used blocking IO operations (1 thread / socket)

 TomP2P v2: Apache MINA (java.nio framework) / 6K LoC

 Not well designed for non-blocking operations (event-driven)

 TomP2P v3: Redesigned for non-blocking operations

 Switched to Netty / 14K LoC, 6K LoC JUnits

 TomP2P v4: API refinements, new features

 Current release (preview) 4.1

 Latest feature (work in progress) MapReduce

 22K LoC, 8K LoC JUnits

6 P2P with TomP2P

Introduction

 Academic background (CSG - UZH):

 Used in EU projects: EC-GIN, EMANICS, SmoothIT

 Used in research projects: FastSS, LiveShift, PSH, B-Tracker, DRFS

 http://tomp2p.net

 For questions: mailinglist (http://lists.tomp2p.net/cgi-bin/mailman/listinfo)

 Specific questions: bocek -at- ifi.uzh.ch or tom -at- tomp2p.net

 Documentation: http://tomp2p.net/doc/ (TomP2P v4.0)

Overview: http://en.wikipedia.org/wiki/TomP2P

 If something is missing, ask!

 Development: https://github.com/tomp2p

 Feature request possible if good reasons provided

 Demo: how to setup TomP2P with Eclipse/git/maven

http://tomp2p.net/
http://lists.tomp2p.net/cgi-bin/mailman/listinfo
http://lists.tomp2p.net/cgi-bin/mailman/listinfo
http://lists.tomp2p.net/cgi-bin/mailman/listinfo

7 P2P with TomP2P

2. Example

Example and Demo

8 P2P with TomP2P

Example

 Demo: a simple put / get example

 Package net.tomp2p.examples.Examples

9 P2P with TomP2P

3. Fundamental Concepts

XOR-based iterative routing

Futures

API Overview

10 P2P with TomP2P

Fundamental Concepts

 Recursive routing vs. iterative routing

+ online status update

- faulty peers cause delay

+ control

- neighbor maintenance

11 P2P with TomP2P

Fundamental Concepts

 TomP2P: iterative XOR-based routing

 Node and data item unique 160bit identifier

 Keys are located on the nodes whose node ID is closest to the key

 Search for a key:

 Lookup in neighbor table for

closest peer (e.g. peers with ID: 0x1,

0x2, 0x3, 0x4)

 Difference to Pastry: one metric,

no leaf set / routing table

My ID Neighbor

ID

Distance

(XOR)

1 2 3

1 3 2

1 4 5

12 P2P with TomP2P

Fundamental Concepts

 TomP2P iterative XOR-based routing

 Neighbors stored in 159 “bags”, bag has capacity c (Kademlia, c=20)

 Routing takes O(log n) → M03, slides 12

 By default UDP, message header 56 bytes

 Configuration options (RoutingConfiguration.java)

 directHits – used for get() operations. (routing sends digest)

 forceTCP – use TCP instead of UDP

 maxSuccess, maxFailure – stop conditions

 parallel – number of parallel connections

 maxNoNewInfoDiff – stop condition. Stops if no new information was

reported. Difference to minimumResults (e.g. for get(key))

 For the CT - don’t worry, default settings are fine 

http://tomp2p.net/
http://tomp2p.net/
http://tomp2p.net/

13 P2P with TomP2P

Fundamental Concepts

 All distributed operations use futures

 Future objects

 Keeps track of future events, while the “normal” program flow

continues → addListener() or await()

 await(): Operations are executed in same thread

 addListener(): Operations are executed in same or other thread

 Demo: blocking operation

(net.tomp2p.examples.Examples)

14 P2P with TomP2P

Fundamental Concepts

 Demo: non - blocking operation

(net.tomp2p.examples.Examples)

 New utilities necessary (loops as recursions)

 Advise: use addListener(…) as much as possible!

 operationComplete(…) must be always called

15 P2P with TomP2P

Fundamental Concepts

 Future utilities

 FutureForkJoin(int nr, boolean cancel, K... Forks)

 Joins already “forked” futures. Waits until all or nr future finished. If nr

reached, futures may be cancelled (e.g. abort download)

 FutureLateJoin(int nrMaxFutures, int minSuccess)

FutureLaterJoin()

 No need to add the futures in the constructor, can be added later

 FutureWrapper()

 A placeholder for futures that are created later

 ForkJoin in Java7

 Fork and join framework – future utilities in TomP2P focus on join,

forking is done “manually”

16 P2P with TomP2P

Fundamental Concepts

 Fun with futures: loops

 Future loop() {

 Future future = new Future();

 recLoop(future);

 return future;

}

void recLoop(Future future) {

 int active = 0;

 for (int i = 0; i < parallel; i++) {

 //if future finished, it will be set to null

 if (futureResponses[i] == null) {

 active++;

 futureResponses[i] = doSomething();

 }

 else if (futureResponses[i] != null) active++;

 }

 if (active == 0) future.weAreDone();

 FutureForkJoin<FutureResponse> fp = new FutureForkJoin<FutureResponse>(1, futureResponses);

 fp.addListener(new BaseFutureAdapter<FutureForkJoin<FutureResponse>>() {

 @Override

 public void operationComplete(FutureForkJoin<FutureResponse> future)

 throws Exception {

 boolean finished = evaluate(future);

 if(finished) future.weAreDone();

 else recLoop(future);

 }

 });

}

17 P2P with TomP2P

Fundamental Concepts

 API Overview: Peer.java

 Basic methods for DHTs

 put(key, value), get(key)

 Additional methods in TomP2P:

 For initial connection: boostrapBroadcast() /

boostrap(Ipaddress, port) / discover(IPaddress, port,

port)

 Requires to specify set*DataReply(…): send(peeraddress,

value) / send(peerconnection, value) / send(key, value)

 Data manipulation: add(key, value)/ putIfAbsent(key, value) /

digest(key) / remove(key)

 Tracker operations: getFromTracker(key) / addToTracker(key,

value)

 Used mostly internally parallelRequests(…)

18 P2P with TomP2P

Fundamental Concepts

 Configurations used in the API

 TomP2P can store multiple values for a key

 put(location_key, content_key, value) → content_key

specified in Configurations

 get(location_key)

→ returns a map with [content_key, value]

 add(location_key, value) → is translated to

put(location_key, hash(value), value)

 TomP2P support domains

 Avoid collision for same keys

 Domains are used for protection (more details later)

 Domains specified in Configurations

 put(key, domain, value) → get(key,domain)

19 P2P with TomP2P

Fundamental Concepts

 Configurations Example

 Number160 nr = new Number160(rnd);

ConfigurationStore cs = Configurations.defaultStoreConfiguration();

cs.setDomain(Number160.createHash("my_domain"));

cs.setContentKey(new Number160(11));

FutureDHT futureDHT = peers[30].put(nr, new Data("hallo"), cs);

20 P2P with TomP2P

5. Components with Examples

DHT

Tracker

21 P2P with TomP2P

Components with Examples

 DHT vs. Tracker

M03, slide 23: DHT “stored by value” – direct storage

M03, slide 24: Tracker “stored by reference” – indirect storage

 indirect (Tracker) direct (DHT)

22 P2P with TomP2P

Components with Examples

 B-Tracker

 Centralized tracker – one peer gets traffic

 DHT: store reference on 20 peers – 20 peers gets traffic

 PEX: exchange information every minute (push)

 B-Tracker, every downloading peer becomes a tracker → forms mesh

 Better balance of load

 To avoid duplicates send compressed list of known peers

 B-Tracker in TomP2P enabled by default

 Currently tests with B-Tracker in Vuze

23 P2P with TomP2P

Components with Examples

 Demo: Tracker with exchange of popular items

(net.tomp2p.examples.ExampleTracker)

 Creat 100 peers, 3 peers have initially each a song

M03 slide 26: peer joining / bootstrap

24 P2P with TomP2P

Components with Examples

 Demo: Tracker with exchange of popular items

 Although demo uses await(), try not to use it

 Demo: Store popular items in DHT

(net.tomp2p.examples.ExampleDHT)

 Tracker vs. DHT what is better for the CT? You decide!

 Further interesting aspects for the challenge task:

 Automate downloads

 Suggestions evaluated by the user

 How to do this more anonymous: music list from a peer is known

 Incentives

 Spamming the system with bogus suggestions

25 P2P with TomP2P

6. Advanced Topics

NAT (UPNP/NAT-PMP)

Security

Replication

SimGrid integration

Direct data connection / persistent connection

Android

26 P2P with TomP2P

Advanced Topics

 NAT

 Network Address Translation – breaks end-to-end

 “If nothing else, [NAT] can serve to provide temporarily relief while

other, more complex and far-reaching solutions are worked out”

(RFC 1631 - The IP Network Address Translator (NAT))

 Easy solutions: UPNP / NAT-PMP

 Both configure port forwarding, but UPNP is more

 UPNP: discover devices - uses broadcasting to find router (Simple

Service Discovery Protocol)

 UPNP: configure devices - uses HTTP and XML to configure

portforwarding (Internet Gateway Device Protocol)

 NAT-PMP: protocol made for configuring port-forwarding, but no discover

(how to find router?)

27 P2P with TomP2P

Advanced Topics

 NAT: Difficult solution:

rendezvous / relay peer which

does “hole punching”, in worst

case relay traffic.

 Hole punching

 Client 1 wants to connect to Client 2

(both clients maintain connection to

Rendezvous)

 Client 1 sends connection request to

Rendezvous → Redezvous send

connection request to Client 2 and the

outgoing port X that Client 1 will use

and send to Client 1 what outigoing port

Y will be used by Client 2 (guess!)

NAT

1.2.3.4

NAT

4.5.6.7

Rendezvous

8.9.0.1

Client 1

192.168.1.2

Client 2

10.0.0.2

28 P2P with TomP2P

Advanced Topics

 Hole punching

 Client 1 sends request to NAT 4.5.6.7 that will fail – no mapping,

however, Client 1 creates a mapping with that request

 Client 2 send a request to Client 1 (1.2.3.4:X) – success!

NAT

1.2.3.4

NAT

4.5.6.7

Client 1

192.168.1.2

Client 2

10.0.0.2

Mapping for NAT 1.2.3.4 (Client 1)

192.168.1.2:4000 1.2.3.4:X 4.5.6.7:Y

Mapping for NAT 4.5.6.7 (Client 2)

10.0.0.2:5000 4.5.6.7:Y 1.2.3.4:X

29 P2P with TomP2P

Advanced Topics

 NAT example in TomP2P, the easy solution

 TomP2P supports NAT-PMP and UPNP, no holepunching or relaying

 Before bootstrap: peer.discover(PeerAddress);

 How it works: (1) send request how others peers sees our IP

 If other peers sees the same IP as we see, we are fine

 If not, we are most likely behind a NAT

 (2) do UPNP, if it fails, do NAT-PMP, if it fails, no connection

 (3) If it works test connection, send request to other peer to contact us

using the port we just set up.

 (4) If we get contacted by this peer within 5 sec, port-forwarding

works.

Manual setup possible using Bindings.java

 No Demo, did not bring my NAT device

30 P2P with TomP2P

Advanced Topics

 Security in TomP2P

 Signature-based, no data encryption

Messages are signed using SHA1 with DSA

 Sybil attacks!

 This attack creates large number of identities, may collude

 How to prevent Data from being overwritten

 Domain and entry protection, requires cooperation

 StorageGeneric.setProtection(…)

For domains and entries

protectionEnabled ALL NONE

protectionMode NO_MASTER MASTER_PUBLIC_KEY

31 P2P with TomP2P

Advanced Topics

 Domain protection

 Set publick key new PeerMaker(PublicKey)

 Enable=ALL, Mode=NO_MASTER → every peer can protect domains,

first come first served

 Enable=NONE, Mode=NO_MASTER → no peer can protect domains

 Enable=ALL, Mode=MASTER_PUBLIC_KEY → every peer can protect

domains, the owner can claim domain

 Enable=NONE, Mode=MASTER_PUBLIC_KEY → no peer can protect

domains except the owner

Owner of domain 0x1234 is peer where 0x1234 == hash(public_key)

 Same concept for entries

 Tracker should have no domain protection and entry protection set to

Enable=NONE, Mode=MASTER_PUBLIC_KEY → WiP

 Demo

 32 P2P with TomP2P

Advanced Topics

Demo 1 (net.tomp2p.examples.ExampleSecurity):

 3 peers, all with public keys

 Setup for domains: Enable=ALL, Mode=MASTER_PUBLIC_KEY

 (1) peer1 stores data in domain2 → success

 (2) peer3 wants to store data in domain2 → fail

 (3) peer2 wants to store data in domain2 → success

Demo 2 (net.tomp2p.examples.ExampleSecurity):

 3 peers, all with public keys

 Setup for domains: Enable=NONE, Mode=MASTER_PUBLIC_KEY

 (1) peer1 stores data in domain2 → success

 (2) peer3 wants to store data in domain2 → success

 (3) peer2 wants to store data in domain2 → success

 (4) peer3 wants to store data in domain2 → fail

33 P2P with TomP2P

Advanced Topics

 Replication

 Enough replicas

 Direct replication

 Originator peer is responsible

 Periodically refresh replicas

 Example: tracker that announces its data

• Problem

 Originator offline → replicas

disappear. Content has TTL,

e.g.

data.setTTLSeconds(15)

34 P2P with TomP2P

Advanced Topics

 Indirect Replication

 The closest peer is responsible,

originator may go offline

 Periodically checks if enough

replicas exist

 Detects if responsibility changes

• Problem

 Requires cooperation between

responsible peer and originator

 Multiple peers may think they

are responsible for different

versions → eventually solved

35 P2P with TomP2P

Advanced Topics

 Replication Demo (net.tomp2p.examples.ExampleDirectReplication)

 Direct replication – for put() and add()

 ConfigurationStore.setRefreshSeconds(2);

 Stop replication if in progress: futureDHT.shutdown();

 Direct replication for remove()

 ConfigurationRemove.setRefreshSeconds(2);

 ConfigurationRemove.setRepetitions(2);

 Stop replication after 4 seconds, 2 repetitions

 Indirect replication (net.tomp2p.examples.ExampleIndirectReplication)

 Set when creating peers

 PeerMaker.setEnableIndirectReplication(true);

 Two types of events: (1) peer learns about closer peer (2) peer checks

frequently for enough replicas

 36 P2P with TomP2P

Advanced Topics

 SimGrid integration

 Scalable simulation of distributed systems

 Publish over 100 papers that include SimGrid

 SimGrid vs. real network

 For TomP2P: simulates network with many peers

 Defined in XML files: platform.xml and deployment.xml

 Logging in console

 Current issue in jMSG: threads, threads, threads!

 Demo: how to use it with TomP2P

 Get the Eclipse workspace: http://tomp2p.net/dev/simgrid/ (Linux x64)

 10’000 peers are OK, to simulate more, kernel parameter tuning

http://tomp2p.net/dev/simgrid/

37 P2P with TomP2P

Advanced Topics

 Direct data and persistent connections

 All connections in TomP2P are RPC and very short-lived

 Open connection – request – reply – close connection

 Direct data as seen in the tracker example → keep alive

 Direct send(PeerAddress, …) or with routing send(key, …);

 Always use setObjectDataReply() or setRawDataReply()

 Object serializes object to byte[] (easy)

 Raw exposes (Netty) buffer to the user for your own protocol (more work)

 Persistent connections set by the user

 Only for direct send send(PeerAddress, …)

 Demo with persistent connections

(net.tomp2p.examples.ExamplePersistentConnection)

38 P2P with TomP2P

Advanced Topics

 TomP2P with Android (early research)

 CSG: early adopter

39 P2P with TomP2P

Advanced Topics

 TomP2P with Android ICS 4.0.3

 Latest Android is ~Java6 (source code) compatible

 Extra work (permissions, IPv4)

 TomP2P with multiple emulators

 Redirect ports!

 telnet to all emulators:

redir add udp:x:y

redir add tcp:x:y

 Connect to 10.0.2.2!

 TomP2P on Android:

Demo with local peers

40 P2P with TomP2P

7. References

41 P2P with TomP2P

4. References

 TomP2P homepage

 http://tomp2p.net

 Kademlia

 S. C. Rhea and J. Kubiatowicz: Probabilistic Location and Routing; IEEE INFOCOM 2002, New York, NY, USA, pp. 1248-1257, June 2002.

 Sybil attack

 Douceur, John R. (2002). "The Sybil Attack". International workshop on Peer-To-Peer Systems. Retrieved 31 March 2011.

 Sybil attack counter measurements

 Raul Landa , David Griffin , Richard G. Clegg , Eleni Mykoniati , Miguel Rio. "A Sybilproof Indirect Reciprocity Mechanism for Peer-to-Peer
Networks”

 B-Tracker

 Hecht, F.V.; Bocek, T.; Stiller, B.; B-Tracker: Improving load balancing and efficiency in distributed P2P trackers, Peer-to-Peer Computing
(P2P), 2011 IEEE International Conference on , vol., no., pp.310-313, Aug. 31 2011-Sept. 2 2011

 Fork/Join in Java
 http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

 Hole punching
 http://www.brynosaurus.com/pub/net/p2pnat/

http://tomp2p.net/
http://tomp2p.net/
http://tomp2p.net/
http://tomp2p.net/
http://tomp2p.net/
http://tomp2p.net/
http://tomp2p.net/
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/
http://www.brynosaurus.com/pub/net/p2pnat/

